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SUMMARY

It is shown that the creep buckling of slender or thin-walled
structures whose material deforms elastically as well as in conse-
quence of time-hardening creep can be analyzed first as if the
deformations were due entirely to steady creep. The results of
this analysis can be easily modified to account for time-hardening
creep, and this modification does nct involve any approximation
when the time-hardening creep strain rate is exprecsed as the
product of a function (f stress by a function of time. The effect
of simultaneous linearly elastic deformations can be taken into
account by multiplying the critical time obtained for steady creep
by a numerical factor. This correction involves no farther-reaching

approximations than the usual steady-creep buckling analysis itself.
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ILLUSTRATIONS

FIG. 1 Idealized Colum:

FIG. 2 Cross Scction of Idealized Columr
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NOTATICN

j gg a amplitude of initial deviations
§7 A total cross-sectional area of column
- b amplitude of additional elastic displacements
3 ; c amplitude of steady creep displacements
% o constant in creep law (4)
%: E Young's modulus of elasticity
% f function of x and y
% F operator
“%‘-; g operator
: % G shear modulus
h operator; also distance hetween flanges of idealized column i
H operator -
I moment of inertia of cross section of column
I, second invariant of stress deviation tensor defined in (8) §
k factor of proportionality in creep law (49) ‘
4 % K constant defined in (42) 5
E i L length of column 'é
, % m exponent in creep law (22) 5
; ? n exponent in creep law (U49) :é
g: P scalar %
: y} P axial compressive load acting on column
. g Py Euler's buckling load for column [see (47)]
E q exponent of time in time-hardening creep law ‘
4 ? r scalar f
¢ ? Sij ijth component of stress deviation tensor ::
i t time measured from instant of load application ;
4 t_.  critical time 3
3 : t: Euler time defined in (61) g
E , w additional displacement normal to surface of structure; alsc '
c ncn-dimensional additional lateral displacement of column ;
[see (32)] :
) ¥, initial deviation normai. to surface from perfect shape of f
structure :
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wtot total non-dimensional lateral dispiacement (elastic plus
creep) of column

X coordinate on surface of thin structure; also non-dimensional
axial coordinate for columa [see (35)]

x* axial coordinate for columnn

. y coordinate on surface of thin structure; also additional

lateral displacement of column

yo initial deviation of center line of imperfect column from
straight axis
v4 amplitude of total displacements of column [see (51)]
515 Kronecker's delta defined in (7)
A change in curvature of column
g Euler strain defined in (61)
eij ijth component of strain tensor
énom nominal strain rate defined in (61)
v Poisson's ratio
p intensity of loading-
°g Buler stress defined in (61)
2 o.j ijth component of stress tensor
- § ®,¥,2 operators

4 Subscripts:

e cr critical

3 e external (convex) side of column

7 i internal (concave) side of column

3 o refers to conditions at instant of load application
o 1 refers to conditions at time tl

Ey

+§

2N

. L]

T S RS I M s M ot o B SN e AR < AN e Bl 2t e i e

3

ST E TN S i

M0 AR B AT AT 26" SEEALARN R T e R DOV S 500 A8 2 4 AN v A Sva e 26 anit/ YDA S ek 2 Sk g A e S

cokaa e

» S LIV AL Lt e 2

UIG AR [HAVY




by

RS,

S I PV
T A S SO - 705 .

150
Y 2T

RO

K
s
¥
B3
73
5

£33

<
2
E

s 2SI Pt

vt s

AM'-.«.: 2 s T TV T

. e

T '
,3 0 {u’u ﬁ‘@
"3 8% Ag}{ih N

“F e DANRSE B ? L% A"‘ 5 % ‘? 4\“ J‘”s‘ua }"w
S s Shat L . - i

Statement of the Problem

Many theoretical analyses of creep buckling

have been published in the last few years on the basis of the assump-
tion that the deformations of the thin or slender structural elements
are due exclusively to secondary, or steady, creep. In reality all
these elements are capable of deforming elastically at the same time
when they creep, and often the creep deformations of the material are
due to primary creep rather than to secondary creep., Of course,
inclusion of elasticity and secondary c¢reep in the study complicates
the calculations.

It is the purpose of the present report to show that in many
cases of practical importance it is permissible to carry out the
major portion of the analybtical work on the basis of the assumption
that the deformations are due exclusively to secondary creep, and to

apply corrections for elasticity and primary creep only as the last
phase of the treatment of the problem.

The correction here proposed for primary (rather than secondary,
or steady) creep is rigorous; it does not involve any approximation,
The correction for elastic deformations following Hooke's law is just
as rigorous as the steady creep buckling analysis itself if the latter
is based on a single-term representation of the shape of displacements,
and if this shape is the eigenfunction of the elastic problem corre-
sponding to the lowest eigenvalue. In the unusual case when the
creep buckling analysis is carried out with greater rigor, the multi-

plying factor here proposed still represents a good approximation in
most cases.

This multiplying factor first appeared in the creep buckling
literature in papers by Kempner [1] and Hult [2]. It was found a-
the solubtion of the differential equation of the column that creeps
under the assumption that the deflected shape is the first eigen-
function of the equations of the linearly elastic column in spite of
the nonlinear character of the creep law, The factor appears in the

same manner in the senior author's report [3] on which the example
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at the end of the present paper is based. The senior author suggesrted

the same correction factor for rectangular plates under uniaxial

compression [4], but without any proof of its correctness. But the

factor itselt has been used for many years for the calculation of the
perfectly elastic structures of civil engineering; in Timoshenko's

Strength of Materials [5] its discovery is attributed to J. Perry
in 1886,

In the present paper the applicability of the correction factor

is extended to thin-walled structures of all kinds., The conditions

are given under which use of the factor does not introduce any
inaccuracies in the analysis beyond those already inherent in the

analysis of the creep buckling of the structure in the presence of
steady creep.
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In the case of columns, plates and shells the,
;préblem, as a rule, tan be stated mathematlcally as a set of equlllb-

Governing Equationg

!
rium equations , ‘
v ' ! 1
Ax,yw ,w,e) = 0 L T(L) ’
' ' ' .l ' H i !
, i ‘ { ' H
a set ol strain-displacement relations , :
t
fogt R . H ,
w(wo,w,sij) =0 o . . | (2)
. .
a.set of boun@ary conditions . \
Q(x,y,w) =0 on-boundaries y = g-(X) . () + "

i i

and ‘the constitutive equation encompassing- elastlc and'time-hardenlng
creep defbrmatlons ; ' v '

.; 1-2vV . q |“:“,'. :
ij 1/2G)[ W kkla} CJgsij-t SR (l%)‘ | ;

In these €quations x and y "ave’ suitable coordinates on the surface
of the structural element,

e

W =W (x,y) represents initial deviaw
tions of the surface 1n ltu unstresseu state from an ideal' shape in

AT

i
EIV.X

5
which the external loads glve rise to only a meibrane ‘state of* stress, - §
w.= w(x,y) 1is the addltlonal dlsplacement in consequence of elastic i %
and creep deformatlons, p' 1s a scalar factor defining: the 1ntensi ! %é
of the external loads, €;; is’'the ijth commonent of the straln : | ‘i
tensor{ a{. is the ijth component of the stress tensor,' siB is . ! é
the ijth component of the tensor of st;ess deviation defineq as ' ‘ 'é

Si5 = %3 - (1/3)0 8, 5 ! C - (%) N

. ’ l'l i ‘- '

RV

{
repeated letter subscrlpts indicate summation: over the values l 2

1Y

and 3 and thus the average pr1nc1pal stress is ) : '

e = (M/3)0 = (1/3)(opy + 0pp + o) : (6)

‘ i
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. the Kronecker delta is defined by
i { *

v f

X 1 when i = )
a8 : : lﬁij = { J (7)
10 .0 when, i £ j .

4B _ .

b ' the second invariant of the stress deviation tensor is

24 s * t ! . ! :

x% ) , = ' !
: oL 9y (1/2)sijsji, , (8)
7‘;’ \ : H t '

q G is the shear modulus characterizing linear elastic deformationms,

S : : v PblSSOH s rat 't the time'lapsed' from the' instant when the

loads were applled C, m and q are 'constants characterizing the
k: creep deformations' o, ¥ and Y] represent functional relations,

and the dot above symbols 1ndlcates a dlfferentlatlon with respect

to tlme. ‘The numerical value:of m is usually between 1 and 7,

and ihet of g is usually 1/3.
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3 o, The Case of' Purely Elastic Deformations The governing equations E
? - 8implify considerably when the deformatlons are purely elastic. It z
, will now.be assumhed that 1n the case when the constitutive equation %

4) is . . %

y (&) ‘ 4
0 ' 1~2V 3

: \ the governing equations'can be reduced to the appropriate boundary % E
H conditions and to the single differential equation i ;
: Fw + pHw + pHw = O . (10) i %
} 5

: wHete [F and H are linear differential operators which may, or i é

i ., may-not, involve multipliers &epéndent on x and y . Examples of (%‘

1 2

such equations are the plate equation, (see, for instance, Eq. 250 . P

! ' on p. 394 of Timoshenko's clas51ca1 book [6]); and ,Donnell's equation R
of the circular cyllndrlcal shell (which is easy to obtain from ]

N : Eq. (6) of one of Donnell's classical papers [7]). %
i ! . ’»,

; . %
o ‘ It is further assumed that when the structural element is %
. . 2‘,‘

. ! )-I' ! %

! %
3 ! :’;:
i { v %
o : -,7%
- . %

T o £
: ’ 5
{

LN KR e




perfect,

W (%,y) = 0 (11)
there exist eigenvalues p = pcr and a corresponding complete set
of eigenfunctions

w = f(x’Y) (12)

for which both the boundary conditions and (10) are identically
satisfied when W, = 0:

¥w + pHw = O (13)
This implies that
Ff(x,y) = p g(x,y) (14)
HE(x,y) = -r g(x,y)

where p and r are scalars. It follows then that the eigenvalue
is

Py = p/r (15)

ILet it be assumed now that the imperfect shell is characterized
by

WO = a f(x’y) (16)

where a is the amplitude of the eigenfunction f(x,y) . The solution
of (10) can then be written in the form

w =1 £f(x,y) (17)
Indeed, substitution in (10) yields the algebraic equation
pb - pra - prb = O (18)

from which the amplitude t of the deformations caused by the loads

o e
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follows as
pPr
b = g e
& o or (19)

Division of numerator and denominator by r and consideration of

(15) lead to the expression

b=a—L (20)

It can be seen that the amplitude of the additional displacements of
an initially imperfect structure increases beyond all bounds as the
intensity of loading approaches the critical value. One should also
note that the amplitude a + b of the total displacements is

Per (21)

Dcr-p

a+b=a

The Case of Purely Steady-3tate Creep Deformations In this case

the constitutive equation (4) is reduced to

€. = CI0e (22)

ij — T2
which is known as Odqvist's law. After a load system of prescribed
intensity p has been applied, any initial deviation wo(x,y) is
augmented with time. As the creep deformations are considered to te
permanent, the natural, unstressed state of the shell at t , which
can be designated as wo(x,y,t) , is, in general, different in shape
and magnitude from wo(x,y,o) at the moment of load application.
The first problem of the creep buckling analysis can thus be stated
as the determination, from equations (1),(2),(3) and (22), of the
creep deformation rate ﬁ(x,y,t) at t when the unstressed state of

the shell is characterized by wo(x,y,t) .

The problem is a difficult one because of the nonlinearity of
(22) when m >1 . No rigorous, closed form solution of any protlem
of this kind is known to the authors. The usual approuch to an
approximate solution consists of assuming ﬁ(x,y,t) to be proportioral
to the eigenfunction f(x,y) corresponding to the iowest eigenvalue
of the eigenvalue problem obtained by replacing (22) with (9), and

6
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satisfying the governing equations in smie opproximete sienner, for

instance, by the collocation .etho?, An improvement on this method

of solution consists of expanding She solutiocn into a series of the
eigenfunctions with unknown coefficients and requiring that the '
multipliers of each eigenfunction vanish,

Ic is of great importance to engineers to know that the ratio of
the coefficient of the second eigenfunction to that of the first
eigenfunction has been found very small during the major part of
the creep process in all those cases in which it was investigated.
Such studies were carried out for columns in 195 {8] and for flat
rectangular plates in 1969 [9]. In addition, the results of the
theory have been found to agree with the results of experiments in’
an engineering approximation. It can be concluded, therefore, ‘that
it is permissible to base the analysis on the assumption that both the

elastic and the creep deformations have the shape of the eigenfunction
corresponding to the lowest eigenvalue.

As at any given time t the deflection rate of the colum
depends only on the state of deflections, one can write

w(x,y) = ¢ £(x,y) = h(e) £(x,y) (23)

where f(x,y) is the eigenfunction of the linearly elastic problem
corresponding to the lowest eigenvalue and h(ec) is a function of
the amplitude alone when p 1is prescribed.

The second problem of the creep buckling analysis is the
integration of (23). Formally one may write

fdt =fﬁ-‘%§7 (24)

In all the problems solved up to now for m >1 a finite time

tcr was found at which the deformations tended to infinity. Hence

the critical time tcr can be defined as

[

TR YL

PPV T N Y. SR

AW AN S NI I LRI AU M

[y

TRTRMLHCL R TP BUL




1 EREN

I A o T < V=
. . - v A S S AT
T X ¥ LI S L sl R A S g i s

RN

335

_ de
ber.st =] B(e) (25)
E: %
‘ . where c, is the magnitude of ¢ at the time when the loads are
R applied and tcr

E creep.
4

st is the critical time in the presence of steady

Simultaneous Nonlinear Time-Hardening Creep and Linearly Elastic
- Deformations

This is the critical time of the structure when the

only mechanism of deformation is steady creep. When the creep defor-

mations are of the primary type, (22) is replaced by

i
e
R

PR 1 LR
M e e R TR
W

3 ¢ -l 5
4 €3 Ct J";si:j (26) 1
‘;, Here t3 can be considered as a constant multiplier of C in all
G y
‘« the differentiations and integrations. Thus inclusion of this power
” of time in the analysis simpiy leads to §
tdat = | <€ (27)
4 h{c) P
* in the place of (24). It follows then that the critical time for
% 2
s B time-hardening creep can be calculated from 3
L 4atl -
L qtl Cer.t.n, = Per.st (28) ;
2 where t . , is the critical time in the presence of time-hardening
3 creep. .‘;
' When, in addition, the structure is capable of linear elastic :

deformations, every small increment cdt in the creep deformations
is magnified by the factor pcr/ (pcr-p) in agreement with (21). Thus
h(c) in the last member of (23) is multiplied by this factor which
remains a constant during the integration with respect to time

provided the intensity of the loading remains constant. It follows
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then that the critical time t:r in the presence of simultaneous
time-hardening creep and elastic deformations is

(29)

1/(q+1)
£, = [(qfl) ]

Per~P "
pcr cr.st
Generalization The argumentis presented are valid if Odqvist's law
of (22) is replaced by some other creep law that expresses the strain
rate as a function of the stresses, and when the time function in (%)
is not a power function. It is only necessary that the creep rate
should be given as a function of stress multiplied by a function of
time. Of course, equations (26) to {29) must be modified if t3 is
replaced by some other function.

Example  To illustrate the statements made, the simple example of
the idealized column of constant cross section simply supported at
its two ends and loaded in uniform axial compression will now be
worked out. At first it will be assumed that the material of the
column deforms only linearly elastically. The notation is shown in
Figs. 1 and 2; the analysis is similar to that presented in [3].

The conditions of equilibrium are:
(8/2)(o; + 0,) =P (30)

(an/¥)(o, - o) = By, + ¥) (31)

where oi is the stress in the internal (concave) flange of the
idealized column, ©_ is the stress in the external (convex) flange
of the column, and both are counted positive if they are compressive;
P is the axial load, also positive if compressive; A/2 is the
cross~sectional area of one flange; and Y, and y are the small

jnitial and additional lateral displacements.

If the notation

o
vz - (32)
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is introduced,where h is the distance between the flanges of the

idealized column, the equilibrium equations can be written in the
form

o, = (B/A)(L + v+ ) o, = (P/A)(1 -w -w) (33)

These two equations take the place of (1) in the general casz.

The small change Ax in the thum of the column during the
transition from the initial shape ¥, to the shape Yo +y is

ax = Fyfocr® (34)
where x* is the distance from one of the supports. With the notation

x = x*/L (35)
equation (34) can be written in the non-dimensional form

or = -(b/217) (3% /x2) (36)

But the curvature can also be expressed in terms of the strains

€, on the internal (concave) and €, on the external (convex) side
of the column (the strains are considered positive when they are
compressive):

oK = (1/11)(ei - ee) (37)
Hence the strain-displacement relation (2) becomes

(9% /3x2) + (2L2/h2)(ei - ee) =0 (38)

Tais corresponds to (2) in the general derivation.

The boundary conditions can be given in the form

w = (%u/ax2) = 0 wvhen x = 0,1 (39)
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and the constitutive ecuation (4) in the case of exclusively elastic
uniaxial deformations reduces to

€ = o/E (40)

Substitution from (33) and {(40) in (38) yields the Gifferential
equation

(02w/3x2) + H(zwo + W =0 : (¥1)
where

K = L12/EAR® (42)
This is (10) if F = a/ax"‘ and pH = .

When the column is perfectly straight,

¥, = 0 . (43)
and (41) redaces to

Q2u/Ix2) + Mw = 0 (L)

which corresponds to (13) in the earlier derivations. This
equation and boundary conditions (39) are satisfied by

w = sin ™ = £(x,y) (45)
From (13) and {14) one obtains

P = -T°sin Tx = p g(x,y) p=P

(u6)
Ksin 7x = -r g(x,y)

¥
1]

and (15) yields the critical value of the axial load

2 2
2,2  1EA(n/2)? _1°EI _
P = PCI' = p/r =T /Kz = L2 = L2 = PE (l;?)
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which is the lowest eigenvalue of the homogeneous differential
equation (kl4t) in the presence of boundary conditions (39). It is
known as the Euler load. The quantity I = A(h/2)2 is the moment

of inertia of the section of the idealized column.

It follows then from {17) and (21) that in the presence of
initial deviations w in the shape of the first ecigenfunction (45)
the sum of the initial and the additional deformaticns becomes
P

P —p Sin M (48)
E

w=a

Next the case of purely steady-state creep defcrmations will te
investigated. Under these conditions (4) simplifies to

. . n
e =€ = ko

(49)
with

a=2m+1 k = 2¢/3™71

(50}

Use will be made of the elastic analogy of [10] and the instantaneous

deflected sbape at ¢ as cauge? by elastic and creep deformations

will be designated bty the symbol Vot It will be represented oy

(51)

which is the eigenfunction corresponding tc the lowest eigenvalue of
the 2lastic problem multiplied by the coefficient 7 .

When tne
axial load P

is acting on this analogous deflected column,
equilibrium requires that

o, = (B/A)(2 + w ) 3, = (3/a3(1 - w ) {52)

The additional deformation w ad of this rnon-liinearly 2lastic column

will be assumed to be represented by the first term of the infinite
series
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e e

W = ¢ sin Tx +
ad si

(53)
The deformation law of the analogous column is
€ = k& (54)
On the basis of (38) the strain-displacement relation of the
analogous column is
(Bew&d/bxe) + (2‘I..2/h2)(e_:L - ee) = 0 (55)
It follows from (52) and (5k4) that
¢, - € = 2k(B/A) (3w, .+ wgot) (56)
But
(sin )3 = (3/4)sin mx - (1/4)sin 3mx (57)

Since the terms sin 3mx , sin 5™ , ... were amitted from Eq. (53),

the present analysis deals only with multipliers of sin mx ., Thus
(56) becomes

€ - €, = 2k(B/A)3[37 + (3/&)73]sin ™ (58)

Substitution from (53) and (58) in (55) and omission of the cciaon
trigonometric multiplier yield

e + 6k(2L2/h2)(P/A)3[7 + {1/W)7°] =0 (59)

This can be solved for the amplitude c¢ of the additional displace~
ments of the analogous elastic column:

¢ = (61/12)(212/02) (B/A)317 + (1/4)7°] (60)

Symbols will now be introduced for the following physical
quantities:
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2
0p = Bp/A = —2s is the Euler stress
4(1/n)
/oL
€. = 0,/E = is the Euler strain
EOE u/m)? )
1
énom = koS = k(P/A)3 is the nominal (initial) strain rate
by = eE/enom is the Euler time

With these symbols (60) can be written in the form

c = (3/M)(1/tg) by + 73) | (62)

This is the amplitude of the additional displacements of the
non-linearly elastic analogous column. But in view of the the elastic
analogy this is also the rate of change of the amplitude of the creep
deformations of the column that aeforms non-linearly in consequence
of steady creep. Thus for the column that deforms only in steady
creep from the state characterized by w, . according to (51) the
rate of change of the creep deformations becomes on the basis of (51)
and (53)

Wy = 7 sin mx = (3/4)(1/tg)(4y + 77)sin mx (63)

Since } = dy/dt , if the only mechanism of deformation were steady
creép, the time required to reach a deformed state characterized by
the amplitude 14 would be given by the integral

4 72 (4+7°)
t, = (4/3)t f A (1/6)t, 1| —n (6k)
1 E bty B 72(1%7?)

(o]

The critical time of creep buckling is defined as the time at which

the amplitude ¢, approaches infinity. Hence
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by = (1/§)tE1g — , . _ (65)
. ! : t
{ , i : H
THis is the formula obtained for this case in [3].
When ‘the creep law is the time-hardening law
1 t ' . - t . ,
= ko'td ; _ = t (e

i 1 ;

the effect of time hardening can be followed dp by replacing k with

ktq 1n.every step of the foreg01ng derlvatlons. It ig easy to see

; thac in such a case (63) is replated by '

5= 2ot = (YY) (s ) e

! ) 1 H

The integral of this equation is

{

6 n : usd)
/tth (h/3)t/ 2 = (1/6)bgle A (68) '
o y ey RGO R

o}

The effect of linear elastlc deformatlons can also be taken into
account w1thout difficulty. Whenever creep causes an increase d7
in the amplitude Jf the deformatlons, this increase is magnlfled by
the factor P, /(P -P) because of the elastlclty of the materlal.'
Since, this factor is constant with tlme, (67) has to be modified to

read , L, .
: { i s ! . '

dy/dt = [PE/QPE-P)](tqytE)(h7-73) ' or o (69)

H i

and the ‘time to reach the prescribed displacement amplitude 4
' t

becomes , ¢ ) Ly .
: 2, .2
s : , 7 (47 ) :
[1/(@0) 165 = (1/6)[(B-P)/Bylt le —a- o (70)
. : B TETE 72(h+7i) '

]




The critical time t* of the' column whose material deforms
simultaneously; because of tlme-hardenlng creep and linear elasticity

, can thus be calculated from the equation

{

' ' 2
! . ’-H-')’
[2/(+ 1) 1635 = (1/6) (2P /7 )t 1 —5> (71)
. 75
or from : . ' '
L oy M/(avd)
t h.+7°
t¥e = § (@r1)(t5/6)[(P-P)/Py]1e e (72)
: r e

!

This expression corresponds to (29). It also agrees with the result
of the analysis of [3] if q , is set equal to zero; this is necessary
since the calculations of .[3] were carried out for a column that

deforms elastlcally and because of steady creep.
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